domingo, 21 de febrero de 2010

PLOTTERS

Un plotter es un periférico de salida que efectúa con gran precisión, impresiones gráficas que una impresora no podría obtener. Al principio, estas máquinas eran usadas solo para imprimir planos, pero desde la llegada del color, sus utilidades crecieron en gran cantidad. Algunos pueden llegar a imprimir telas.
No necesita traducir la información gráfica a líneas de impresión y puntos. Se les puede hablar directamente de vectores, desplazamientos y ubicaciones, y las líneas son realmente líneas y no una sucesión de puntos.
Son ideales para tareas de CAD, porque en sus diseños usan mas líneas que caracteres.
Son usados en varios campos, tales como ambientes científicos, la ingeniería, el diseño, la arquitectura, etc. Muchos son monocromáticos, pero los hay de cuatro colores e incluso hay modelos que llegan a poseer hasta ocho colores.
Las dimensiones del plotter varían según la aplicación que se le dé, ya que para trabajos de gráficos profesionales, se emplean plotters de hasta 137 cm. de ancho, mientras que para otras no tan complejas, son de 91 a 111 cm.

Otra característica que varía según la aplicación, es la cantidad de memoria RAM.




















Funcionamiento

Simula sobre el papel, unos ejes de coordenadas (x, y) así podrá moverse en cuatro direcciones. Aunque existen también, plotters que mueven el papel.

Su tipo de impresión es chorro de tinta, similar al de las impresoras habituales, algunas marcas usan la tecnología de impresión piezoeléctrica, que permite una mayor duración de los cabezales y logra una velocidad de impresión hasta cinco veces mayor.
Este tipo de impresión se usa para imprimir gigantografías.

Tipos de plotters

Se distinguen los plotters de corte y los de impresión. Tanto para los de impresión como para los de corte, los dibujos o diseños se extraen de la computadora y luego la imagen debe ser exportada al soft del plotter.
Generalmente se trabaja a escala, por lo que las medidas reales antes de imprimir, se dan al soft del plotter.

Plotters de impresión

Los de impresión pueden imprimir en colores, al igual que una impresora de chorro de tinta. Se utiliza mucho para carteles y gigantografias, las que se van reproduciendo por partes.
La impresión se puede realizar en papel y tinta común, o con tintas especiales con protección para exteriores.

Plotters de corte

Poseen una cuchilla de la mitad del tamaño de una aguja de coser. Se utiliza para carteles, decoración de vehículos, vidrieras, etc. El material usado para este tipo de trabajos es vinilo para plotters (similar al de las calcomanías).

Plotters de corte e impresión

Existen maquinas que pueden hacer los dos trabajos, el de corte y el de impresión (imprime con el sistema de chorro de tinta y luego puede recortar usando una cuchilla).




















Clases de plotters
Los plotters se diferencian también en la manera de llevar a cabo los movimientos.


De mesa

Consta de una superficie plana, donde se coloca el papel o material a usar. A lo largo posee un par de rieles sobre los que se desplaza una varilla transversal, la cual tiene un carrito con movimiento de un carril hacia otro. El movimiento de la varilla sobre los rieles da una de las coordenadas de ubicación, por ejemplo "x", mientras que el movimiento del carrito a lo largo de la varilla da la otra coordenada "y".
A un lado de los rieles se encuentra el receptáculo que guarda las lapiceras, un mecanismo se encarga de capturar la lapicera que necesite para llevarla al carrito y dibujar.


De tambor

El papel se encuentra enrollado en el tambor giratorio, y el papel se mueve en una sola dirección. Una varilla de impresión que cubre todo el ancho de la hoja deposita pequeñas cargas estáticas sobre el papel a medida que barre toda su superficie, creando una imagen latente. Luego, se pasa el papel por depósitos de tinta electrostática, que es atraída por las cargas depositadas y convierte la imagen virtual en real. Para copias color, solo hay que pasar el papel tres veces por la varilla "impresora" y por recipientes de tintas diferentes.
Impresoras de gran formato


Denominamos de esta manera a aquellas impresoras, casi exclusivamente de tinta, que imprimen en formatos hasta el A2 (42x59,4 cm). Son impresoras que aúnan las ventajas de las impresoras de tinta en cuanto a velocidad, color y resolución aceptables junto a un precio bastante ajustado, generalmente una pequeña fracción del precio de un plotter.
Se utilizan para realizar carteles o pósters, pequeños planos o pruebas de planos grandes, así como cualquier tarea para la que sea apropiada una impresora de tinta de menor formato: cartas, informes, gráficos. Hasta hace poco sólo existían un par de modelos, ahora las hay de Epson, Canon e incluso HP.




IMPRESORAS LASER

































Desde 1975 a la fecha, año en que se registra la primera impresora láser, el desarrollo de éstas ha sido vertiginoso. Originalmente, el ambiente de la impresión se reducía a la impresora misma, ahora implica todo un ciclo abierto y lleno de posibilidades: tóner, papel, impresora, servicio, software y herramientas en línea, por ejemplo, son parte de todo lo que ahora constituye el mundo de la impresión.
Actualmente se han desarrollado múltiples alternativas orientadas al sector de la impresora láser, que entre otras posibilidades, permiten al usuario trabajar grandes volúmenes en tiempo reducido y con excelente calidad.
Este tipo de tecnologías para imprimir puede diferenciarse a partir del balance entre calidad y velocidad de impresión. En cada uno de estos rubros, la tecnología láser destaca por las prestaciones que alcanza: la calidad de impresión láser supera a la impresión por inyección de tinta; en términos de velocidad, impresoras como la CP1515n de HP imprime hasta 12 páginas a color por minuto o la LáserJet P2015 también de HP alcanza hasta 27 páginas por minuto en impresiones monocromáticas, muestran el grado de velocidad que estos dispositivos han alcanzado en poco más de 30 años.
Otro aspecto relevante es la incorporación del Fusor instantáneo. Esta tecnología, desarrollada y patentada por HP, básicamente sustituye la lámpara halógena por el calentador cerámico y elimina las diferencias de aire entre los cilindros metálicos y el dispositivo de calentamiento.
Con la tecnología de Fusor instantáneo se obtiene mayor velocidad de impresión y economía en el consumo eléctrico. En síntesis:
• Aumenta la productividad con la impresión rápida del primer. Por ejemplo: en fusores anteriores, para imprimir 5 páginas distintas, eran necesarios 40 segundos para calentar la impresora y 15 para imprimirlas. Con el Fusor instantáneo el calentamiento es de sólo 15 segundos y se mantiene el tiempo de impresión.
• Ahorra dinero por su bajo consumo eléctrico.
• Es un sistema más silencioso ya que no utiliza ventiladores de enfriamiento.
• Permite mayor velocidad a la hora de imprimir en el modo de "ahorro de energía" (econofast).
En resumen, el mundo de las impresoras láser gana terreno y transforma el ciclo de la impresión. De acuerdo con estudios de algunas empresas, cuando se utilizan impresoras láser en pequeñas y medianas empresas se consigue una mejor calidad de impresión sobre cualquier papel y se brinda mejor respuesta a ciclos de trabajo exigentes.


FUNCIONAMIENTO DE LAS IMPRESORAS LASER



















La impresión láser se basa enteramente en la interacción electrostática, el mismo fenómeno que produce que un plástico atraiga trozos de papel tras ser frotado con una prenda de fibra.
Para comprender la impresión electrostática, basta saber que las cargas eléctricas pueden ser positivas o negativas, y que las cargas de signo opuesto se atraen, mientras que las cargas de igual signo se repelen.

En primer lugar, se carga negativamente toda la superficie de un tambor fotosensible, del tamaño de una hoja. Acto seguido, se hace avanzar el tambor línea a línea, y un láser recorre horizontalmente cada línea, ayudado por un espejo giratorio (en otras palabras, se produce un proceso de barrido). El láser incide en los puntos donde la tinta se deberá fijar, invirtiendo la carga (que ahora será positiva). El láser se desconecta en los lugares donde no deberá aparecer tinta (quedando con carga negativa). Por tanto, tras recorrer todo el tambor, solo habrá cargas positivas en los puntos donde deberá depositarse tinta, mientras que el resto (lo que constituirá el fondo blanco del papel) queda cargado negativamente. En otras palabras, se ha conseguido crear una imagen electrostática de la hoja a imprimir, mediante cargas positivas sobre un fondo de cargas negativas.


Puntos cargados positivamente:
Los puntos cargados positivamente en el tambor atraen partículas de tóner (material electronegativo mezclado con un pigmento que lo dota de color). Por tanto, la imagen final queda "dibujada" sobre el tambor por medio de puntos negros de tóner.

El papel a imprimir se carga positivamente en su totalidad. Por tanto, al hacerlo pasar por el tambor, atraerá a las partículas de tóner (que tienen carga negativa), y la imagen quedará finalmente formada sobre papel. Finalmente, el tóner adherido al papel se funde mediante la aplicación de calor, haciendo que quede totalmente fijado al papel. Se consigue así imprimir una página en una sola pasada, al contrario que en las impresoras de inyección de tinta, donde la página se imprime línea a línea. Antes de imprimir una nueva página, se realiza un borrado electrostático del tambor, dejándolo preparado para un nuevo ciclo.

Impresoras con diodos emisores de luz:
Existe otra variante de las impresoras láser en las que no es necesario un proceso de barrido. En lugar de un láser y un sistema de espejos se dispone de una hilera de diodos emisores de luz (Láser-LED). Por ejemplo, en una impresora de 300 ppp, habrá una hilera de LED cubriendo una línea completa del papel, a razón de 300 LED por pulgada. Sólo se encienden, para cada línea, aquellos diodos que corresponden a puntos donde deberá aplicarse tóner. Este proceso se repite línea a línea hasta procesar el tambor completo. Se produce el mismo efecto que con un barrido láser, pero de forma más rápida.
Tecnología con diodos de cristal líquido:
Otra variante emplea diodos de cristal líquido (LCD) en lugar de LED. Estos conforman un material que es transparente u opaco según el nivel de tensión eléctrica que se le aplica. Se forzarán al estado transparente aquellos cristales correspondientes a los puntos donde deba aplicarse tóner, manteniendo el resto de diodos en estado opaco. Por otra parte, se aplica una lámpara halógena que ilumina todos los cristales, y sólo pasa luz a través de los diodos en estado transparente, invirtiendo la carga en el tambor

.Ventajas e inconvenientes de la impresión láser:
Las impresoras láser son mucho más rápidas que las impresoras de inyección de tinta. Además, están dotadas de una mayor precisión en la colocación de puntos sobre el papel. También economizan tinta, ya que depositan la cantidad de tóner necesaria, sin exceder ese límite. El tóner no es caro en comparación con los cartuchos de tinta y, además, es mucho más duradero, lo que resulta rentable en el entorno de una oficina, donde se imprimen gran cantidad de documentos diariamente. Como desventaja principal, el precio de estas impresoras es muy elevado en comparación con las impresoras de inyección de tinta.

Dispositivo
El mecanismo de las impresoras láser consta de un cilindro rotatorio, llamado tambor, cuyo cuerpo principal está compuesto por un material buen conductor de la electricidad, normalmente un metal, y está recubierto por una fina capa de material fotoconductor, de un espesor entre 20 y 100 micras ( ).
Durante la impresión, el tambor gira sobre su eje a velocidad constante. En rededor del tambor se sitúan el resto de componentes de la impresora, los más importantes son los siguientes:
• Cargador; que se encarga de cargar eléctricamente la superficie del tambor. La carga eléctrica ha de quedar distribuida de forma uniforme.
• Láser; ilumina las zonas de la imagen que no serán imprimidas, dejando carga tan sólo en aquellos puntos del tambor que corresponderán a puntos impresos en el papel.

• Agitador de tóner; somete al tambor a un baño de tóner (tinta especial) evaporado o en polvo. El tóner posee ciertas características magnéticas por las cuales es atraído a aquellos puntos del tambor que permanecen cargados.
• Punto de impresión; lugar donde el tambor imprime sobre el papel. Es de particular importancia el mecanismo que permite que el papel se desenganche del tambor, prosiguiendo su camino por e interior de la impresora.
• Limpiador; limpia los restos de tóner y carga que quedan en la superficie del tambor.


Materiales fotoconductores:
El punto clave de la impresión mediante un dispositivo láser corresponde al momento en que el láser barre la superficie del tambor para formar la imagen que será imprimida. Como ya se ha dicho, la superficie del tambor está recubierta por un material fotoconductor.

Los materiales fotoconductores son, generalmente, aleaciones semiconductoras. Se construyen de forma que la última capa de cada átomo esté completamente llena de electrones. De esta forma, se dificulta el movimiento de electrones a lo largo del material (de la misma forma en que es extremadamente dificultoso desplazarse en un vagón de metro a rebosar) y, por tanto, estos materiales son muy malos conductores de la electricidad. Por lo tanto, la carga eléctrica que el cargador sitúa sobre el material fotoconductor no puede atravesarlo hacia el interior metálico del tambor; en estas condiciones el material fotoconductor actúa como un aislante.
Sin embargo, cuando la luz del láser interactúa con los electrones de la última capa atómica de la aleación fotoconductora, la energía lumínica puede ser absorbida, provocando que uno de los electrones de esta capa suba a un nivel de energía superior (capa de conducción), dejando un espacio vacío en la última capa del material (capa de valencia). Tanto el electrón promocionado al nivel de conducción, como el hueco de carga que ha dejado en el nivel de valencia pueden trasladarse por el material prácticamente como si fueran dos cargas libres en el vacío: es decir, el material se ha vuelto conductor al ser iluminado (este es el origen de la palabra fotoconductor).

De esta forma, los lugares que son iluminados por el láser permiten que la carga eléctrica situada por el cargador escape a través del material fotoconductor al núcleo metálico del tambor. De esta forma, el láser puede crear una imagen electrostática del material a imprimir en la superficie del tambor. Además, modulando la intensidad del láser, se puede controlar con gran precisión el tono de la imagen que finalmente será impresa.
Etapas de la impresión:

Las diferentes etapas de la impresión se detallan a continuación:
• El ordenador digitaliza la imagen a imprimir, determinando la cantidad de tóner que corresponde estampar en cada punto.
• El cargador deposita carga eléctrica distribuida uniformemente a lo largo y ancho de la superficie del tambor.
• El láser recorre la superficie del tambor, iluminándola con la intensidad adecuada de tal forma que en cada punto quede una cantidad de carga superficial proporcional a la cantidad de tóner necesario en cada punto.
• El agitador somete la superficie del tambor a un baño de polvo de tóner (que suele estar compuesto por polímeros con cierto momento magnético). La interacción electromagnética entre la carga restante en la superficie del tambor y los dipolo magnéticos del tóner hace que este último se adhiera a las zonas cargadas en la superficie del tambor. Esta fase se conoce como revelado
• El tambor aplasta el tóner adherido a su superficie contra el papel a imprimir. Gran parte del tóner pasa al papel, que ha sido cargado eléctricamente (mediante diferentes procesos de rozamiento).
• El limpiador limpia los restos de tóner que no han quedado en el papel.
• El papel impreso pasa entre dos rodillos, el fusor (que ha sido calentado por una resistencia eléctrica) y el rodillo de presión, que se encargan de fundir y fijar el tóner al papel.


En el proceso de impresión de cada página, el tambor realiza varias rotaciones completas, sincronizando a la perfección la actuación de las diferentes partes del procedimiento. En la siguiente figura podemos ver un esquema básico de la disposición de los diferentes elementos que intervienen en la impresión y de su funcionamiento:


VENTAJAS E INCONVENIENTES:
La principal ventaja de las impresoras láser estriba en el hecho de que su resolución tan sólo se encuentra limitada por el tamaño de las partículas cargadas que se depositan sobre el tambor. Además, el proceso de impresión es más rápido que la mayoría de métodos de inyección de tinta, siendo la velocidad de impresión independiente de las características de la información a imprimir, ya que el tambor gira a velocidad fija.

Por otra parte, el principal inconveniente de las impresoras láser viene dado por el hecho de que la velocidad de impresión es constante, y no se puede interrumpir una vez comenzado (ya que la carga superficial en el tambor se disipa al cabo de poco tiempo). Este hecho obliga a que la impresora sea capaz de almacenar en su propia memoria toda la página antes de imprimirla, dado que la velocidad de impresión suele ser muy mayor que la tasa de transferencia de los cables usuales. Además, resulta difícil (y caro) mejorar el procedimiento para realizar impresiones en color.

En general, las impresoras láser son más caras que sus hermanas de tinta, aunque el precio de los consumibles es mucho menor (si se compara el precio por copia). Este hecho, junto con su gran velocidad de impresión, hace que la mayor parte de oficinas opten por sistemas de impresión láser. La mayor parte de los departamentos de física de todo el mundo utilizan este tipo de impresión

miércoles, 17 de febrero de 2010

IMPRESORAS DE INYECCION DE TINTA


Una impresora de inyección de tinta utiliza una de las tecnologías de impresión más populares hoy en día. Los costos relativamente bajos y las habilidades de impresión de propósito múltiple hacen de las impresoras de inyección de tinta una buena selección para los pequeños negocios y las oficinas en casa.
Las impresoras de inyección de tinta utilizan una tinta que se seca rápidamente, basada en agua y un cabezal de impresión con series de pequeñas inyectores que rocían tinta a la superficie del papel. El ensamblado de impresión es conducido por un motor alimentado por una correa que mueve el cabezal a lo largo del papel.
Las impresoras de inyección de tinta fueron fabricadas originalmente para imprimir solamente en monocromático (blanco y negro). Sin embargo, desde entonces el cabezal se ha expandido y las boquillas se han incrementado para incluir cyan, magenta, amarillo y negro. Esta combinación de colores (llamada CMYK) permite la impresión de imágenes con casi la misma calidad de un laboratorio de revelado fotográfico (cuando se utilizan ciertos tipos de papel). Cuando se combina con una calidad de impresión clara y de gran calidad de lectura, las impresoras de inyección de tinta se convierten en la selección de todo en uno para las necesidades de impresión monocromáticas y a color.

Funcionamiento

La impresión de inyección de tinta, como la impresión láser, es un método sin contacto del cabezal con el papel, que se inventó mucho antes de sacar a la venta otras formas menos avanzadas, por el hecho de falta de investigación y experimentación.
La tinta es emitida por boquillas que se encuentran en el cabezal de impresión. El cabezal de impresión recorre la página en franjas horizontales, usando un motor para moverse lateralmente, y otro para pasar el papel en pasos verticales. Una franja de papel es impresa, entonces el papel se mueve, listo para una nueva franja. Para acelerar el proceso, la cabeza impresora no imprime sólo una simple línea de píxeles en cada pasada, sino también una línea vertical de píxeles a la vez. La tinta se obtiene de unos cartuchos reemplazables.
Algunas impresoras utilizan dos cartuchos, uno para la tinta negra y otro para la de color, en donde suelen estar los tres colores básicos. Estas impresoras tienen como virtud la facilidad de manejo, pero en contra, si utilizamos más un color que otro, nos veremos obligados a realizar la sustitución del cartucho cuando cualquiera de los tres colores se agote, aunque en los demás compartimentos todavía nos quede tinta de otros colores. En los últimos años esta desventaja se ha visto solventada con la aparición en el mercado de impresoras que utilizan cartuchos de tinta con colores individuales lo cual representa un gran ahorro de recursos debido a que permite aprovechar el máximo redimiendo a la tinta de todos los colores, reemplazamos solo el cartucho que se encuentra agotado.

miércoles, 3 de febrero de 2010

El Osciloscopio

¿QUE ES EL OSCILOSCOPIO?


Un osciloscopio es un instrumento de medición electrónico para la representación gráfica de señales eléctricas que pueden variar en el tiempo. Es muy usado en electrónica de señal, frecuentemente junto a un analizador de espectro.
Presenta los valores de las señales eléctricas en forma de coordenadas en una pantalla, en la que normalmente el eje X (horizontal) representa tiempos y el eje Y (vertical) representa tensiones. La imagen así obtenida se denomina oscilograma. Suelen incluir otra entrada, llamada "eje Z" o "Cilindro de Wehnelt" que controla la luminosidad del haz, permitiendo resaltar o apagar algunos segmentos de la traza.
Los osciloscopios, clasificados según su funcionamiento interno, pueden ser tanto analógicos como digitales, siendo el resultado mostrado idéntico en cualquiera de los dos casos, en teoría.


¿PARA QUE SIRVE EL OSCILOSCOPIO?

En un osciloscopio existen, básicamente, dos tipos de controles que son utilizados como reguladores que ajustan la señal de entrada y permiten, consecuentemente, medir en la pantalla y de esta manera se puede ver la forma de la señal medida por el osciloscopio, esto denominado en forma técnica se puede decir que el osciloscopio sirve para observar la señal que quiera medir.
El primer control regula el eje X (horizontal) y aprecia fracciones de tiempo (segundos, milisegundos, microsegundos, etc., según la resolución del aparato). El segundo regula el eje Y (vertical) controlando la tensión de entrada (en Voltios, milivoltios, microvoltios, etc., dependiendo de la resolución del aparato).
Estas regulaciones determinan el valor de la escala cuadricular que divide la pantalla, permitiendo saber cuánto representa cada cuadrado de esta para, en consecuencia, conocer el valor de la señal a medir, tanto en tensión como en frecuencia.


¿QUE CONTROLES TIENE EL OSCILSCOPIO?



POWER: es el switch de encendido y apagado del osciloscopio.
INTENSITY: ajusta la brillantez de la forma de onda para una mejor visualización.
TRACE ROTATION: (rotación de trazo) rotando este control con un pequeño destornillador plano se puede ajustar la línea o trazo en forma horizontal.
FOCUS: este control sirve para iluminar el despliegue en pantalla.
CAL 0.5V: es una terminal para calibración de voltaje. Podemos conectar una de las puntas del osciloscopio en esta terminal y deberá aparecer en pantalla un voltaje de 0.5 Vpp de aproximadamente 1 Khz en forma de onda cuadrada.
POSITION: es un control de ajuste para nivelar la señal A en forma vertical.
VOLTS/DIV VARIABLE FOR CH A : es un ajuste fino para cuando seleccionamos Volts/div.
VOLTS/DIV: es el control para cambiar de escala referente a voltaje por división para el canal A.
NOTA: el control #4 deberá estar en la posición CAL.
VERTICAL INPUT: es la entrada vertical para el canal A; aquí se conecta el cable para introducir una señal por el canal A.
AC-GND-DC: es una palanca de 3 posiciones, las cuales son:
posiciones AC: para cuando queramos desplegar una señal AC.
Posición GND: es para indicar la tierra (Ground), en esta posición se despliega solamente un trazo horizontal (------)
Posición DC: para cuando queramos desplegar una señal de voltaje DC.
*NOTA: en algunos osciloscopios puede desplegarse una señal de voltaje AC aunque la posición de voltaje se encuentre en DC.
COMP. TEST: (prueba de componentes) este control sirve para cambiar del modo osciloscopio al modo de probador de componentes (ver procedimiento en el manual).
POSITION: en un control de ajuste para nivelar la señal del canal B en forma vertical.
INVERT: botón que cuando es presionado invierte la polaridad vertical de la señal que está siendo visualizada mediante el canal B.
VOLTS/DIV VARIABLE FOR CH B: ajuste fino para cuando utilizamos el canal B, debe ubicarse en la posición cal.
VERTICAL INPUT: es la entrada vertical para el canal B, aquí se conecta el cable para introducir una señal para el canal B.
AC-GND-DC: es la palanca equivalente a la #2 para manejar el canal B.
A-ADD-B: son 3 botones que pueden actuar solos o combinadamente de acuerdo a como se indica a continuación.
CH-A: si se presiona el botón A, se desplegara la señal captada por el canal B.
CH-B: si se presiona el botón B, se desplegara la señal captada por el canal B.
DUAL: pueden desplegarse las 2 señales al mismo tiempo, en cierto intervalo de tiempo por división.
ADD: (adición) cuando se presiona este botón, las señales del canal A y B son sumadas.
X5 MAG: cuando este botón es presionado, el barrido de tiempo es magnificado por 5 veces.
POSITION ↔: sirve para ajustar la posición de la señal en el eje horizontal.
SWEEP TIME/DIV VARIABLE: es un ajuste fino que acompaña al control time/div.
SWEEP TIME/DIV: es un selector de diferentes escalas que permite modificar el barrido de tiempo por división de una señal.
GND: (Ground - tierra) es la Terminal para conectar la tierra.
SLOPE +-: es un botón para sincronizar una señal de acuerdo a la polaridad + -.
AUTO: es un botón que al presionarlo, un auto barrido es efectuado. El barrido es puesto en un estado de libre ejecución aun cuando no se encuentre una señal de entrada aplicada. Nts lo utilizaremos a conveniencia para el despliegue de las señales.
LEVEL: es una perilla giratoria para ajustar el nivel de disparo de la señal. Nts lo utilizaremos para detener un poco la impresión de cuando una señal “parece que no la podemos detener”.
COUPLING: es una palanca de 3 posiciones para diversos modos de sincronía:
AC: para operación normal.
C-LF: es un control par dejar pasar señales de cierta frecuencia nada más.
TV: sirve para manejar señales de televisión o video compuesto.

EXT. INPUT: es una entrada para el disparo de una señal externa.
SOURCE: (fuente) es un selector de señal de sincronía, sus posiciones son:
INT: las señales del canal A y B son sumadas en el disparo.
B: la señal es a partir del canal B.
LINE: una forma de onda AC es usada como fuente de sincronía.
EXT: esta posición se usa junto a la señal externa del disparo como fuente de sincronía.

¿TIPOS DE ONDAS?
Se pueden clasificar las ondas en los cuatro tipos siguientes:
• Ondas senoidales
• Ondas cuadradas y rectangulares
• Ondas triangulares y en diente de sierra.
• Pulsos y flancos ó escalones